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Abstract. No direct imaging is possible in turbid media, where light propagates diffusively over length
scales larger than the mean free path `. The diffuse intensity is, however, sensitive to the presence of
any kind of object embedded in the medium, e.g. obstacles or defects. The long-ranged effects of isolated
objects in an otherwise homogeneous, non-absorbing medium can be described by a stationary diffusion
equation. In analogy with electrostatics, the influence of a single embedded object on the intensity field is
parametrized in terms of a multipole expansion. An absorbing object is chiefly characterized by a negative
charge, while the leading effect of a non-absorbing object is due to its dipole moment. The associated
intrinsic characteristics of the object are its capacitance Q or its effective radius Reff , and its polarizability
P . These quantities can be evaluated within the diffusion approximation for large enough objects. The
situation of mesoscopic objects, with a size comparable to the mean free path, requires a more careful
treatment, for which the appropriate framework is provided by radiative transfer theory. This formalism
is worked out in detail, in the case of spherical and cylindrical objects of radius R, of the following kinds:
(i) totally absorbing (black), (ii) transparent, (iii) totally reflecting. The capacitance, effective radius, and
polarizability of these objects differ from the predictions of the diffusion approximation by a size factor,
which only depends on the ratio R/`. The analytic form of the size factors is derived for small and large
objects, while accurate numerical results are obtained for objects of intermediate size (R ∼ `). For cases (i)
and (ii) the size factor is smaller than one and monotonically increasing with R/`, while for case (iii) it is
larger than one and decreasing with R/`.

PACS. 42.30.-d Imaging and optical processing – 42.25.Bs Wave propagation, transmission and absorption
– 42.68.Ay Propagation, transmission, attenuation, and radiative transfer

1 Introduction

Light undergoes multiple scattering when propagating
through an inhomogeneous medium over distances much
larger than one mean free path (see Ref. [1] for a review).
Objects embedded in such a turbid medium are invisi-
ble from the outside: no ballistic imaging is possible. Ob-
stacles or defects can, however, be detected by a careful
analysis of the perturbations of the diffuse intensity field.
Imaging through turbid media has been the subject of
many investigations. It has a wide range of applications,
especially in the field of medical imaging. Just to mention
one example, at this moment the Philips Laboratories in
Eindhoven (the Netherlands) are testing prototype devices
to detect breast cancer by diffuse light propagation. This
method is non-invasive: as opposed to conventional X-ray
tomography, it does not cause radiation damage, even if
applied to a large population over a long period of time.

In reference [2] it has been shown theoretically, and
demonstrated experimentally, that the diffuse image of
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an object embedded in a homogeneous turbid medium,
whether absorbing or not, can be quantitatively described
by the diffusion approximation. This framework, to be re-
called in Section 2, is advantageously rephrased in the
language of electrostatics. The long-distance effect of an
embedded object on the diffuse intensity field I(x) is char-
acterized by a multipole expansion. If the object absorbs
radiation, the leading term is a negative charge q, while a
non-absorbing object is chiefly described by a dipole mo-
ment p. Like in electrostatics, higher-order multipoles are
most often negligible. This framework leads to a quantita-
tive prediction of the diffuse image of the object, i.e., the
profile of diffuse intensity transmitted through a thick slab
near the embedded object. In reference [2] the charge and
the dipole moment of a sphere and of a cylinder have been
calculated within the diffusion approximation, namely by
solving the diffusion equation in the presence of a spheri-
cal or cylindrical object. This approach is justified a priori
for macroscopic objects, with a size much larger than the
mean free path `. Further results on imaging of objects
within the framework of the diffusion approximation can
be found in references [3–6].
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The diffusion approximation breaks down in the case
of mesoscopic embedded objects, with a size comparable
to the mean free path. Recently, Lancaster and Nieuwen-
huizen have investigated the cases of point scatterers and
of small mesoscopic scatterers [7]. In the situation of point
scatterers, the analysis is rather simple, although short-
distance singularities have to be regularized, introduc-
ing thus new effective parameters. A partial-wave expan-
sion was introduced in the more difficult case of extended
objects.

The goal of the present work is to propose a more gen-
eral approach to the quantitative calculation of the charge
and dipole of a mesoscopic object. We shall put the em-
phasis on the associated intrinsic characteristics: capaci-
tance Q, effective radius Reff , polarizability P . The nat-
ural framework to evaluate these parameters is radiative
transfer theory (RTT) [8–11], at least in the semi-classical
regime, corresponding to most experimental situations,
defined by ` � λ, with λ being the wavelength of radia-
tion. RTT provides a quantitative description of the inten-
sity over mesoscopic length scales, down to the mean free
path `, whereas the diffusion approximation only describes
the variations of the diffuse intensity I(x) over distances
much larger than `. This advantage of RTT with respect
to the diffusion approximation, especially when dealing
with skin-layer phenomena near boundaries, has been em-
phasized in several recent works [12–14]. For definiteness
and simplicity, we consider multiple isotropic scattering of
scalar waves in a non-absorbing medium. We focus our at-
tention on spherical or cylindrical embedded objects, with
radius R, and restrict the analysis to the following three
cases:

(i) totally absorbing (black) object,
(ii) transparent object, with the same optical index as

the medium,
(iii) totally reflecting object.

In Section 2 we recall the diffusion approach of refer-
ence [2]. In particular we express the charge and the dipole
of an embedded object in terms of intrinsic characteristics,
its capacitance Q or its effective radius Reff , and its polar-
izability P , and we recall the predictions of the diffusion
approximation in the cases listed above. In Section 3 we
employ RTT in order to derive the capacitance Q or the
polarizability P of a sphere in the same three cases. Ana-
lytical predictions are obtained for small spheres (R� `)
and large spheres (R � `), while the appropriate RTT
equation is solved numerically in the general case (R ∼ `).
The same analysis is then performed in Section 4 for the
effective radius Reff or the polarizability P of cylindrical
objects. Section 5 contains a brief discussion.

2 General framework

2.1 Multipole expansion

Our goal is to investigate the diffuse image of a small ob-
ject embedded in a homogeneous, non-absorbing multiple-
scattering medium. The size L of the sample is assumed to

be very large with respect to the mean free path `, so that
the diffusion approximation can be used to describe the
intensity I(x), everywhere except in a skin layer around
the object under study, with a thickness of order `. The
intensity I(x) is therefore the solution of the stationary
diffusion equation

∇2I(x) = 0, (2.1)

with appropriate boundary conditions, taking account of
sources, of the geometry of the sample, and of the pres-
ence of the embedded object. Let I0(x) be the solution
of equation (2.1) in the absence of the object. The total
intensity reads

I(x) = I0(x) + δI(x). (2.2)

The main goal of the present work is to provide a quan-
titative characterization of the disturbance δI(x) of the
diffuse intensity, representing the diffuse image of the em-
bedded object.

• The case of a sphere

Consider first the case where the embedded object is a
small sphere, with radius R, located at the position x0

in the medium. It is expected on general grounds that
the disturbance δI(x) can be characterized by a multipole
expansion, in analogy with electrostatics [2,4–7]. It turns
out that only the first two of them, namely the charge q
and the dipole moment p, play a role, while higher-order
multipoles are most often negligible. Assume for a while
that the medium is infinite. Setting r = x−x0 and r = |r|,
the disturbance of the intensity far enough from the object
assumes the form

δI(x) = (q + p · ∇)
1

r
=
q

r
−

p · r

r3
· (2.3)

This expression, which is a solution of the diffusion equa-
tion (2.1), holds as soon as the distance to the object is
large with respect to the mean free path `.

The linearity of the problem and the isotropy of the
spherical defect imply that the charge q is proportional
to the local intensity I0(x0) in the absence of the object,
while the dipole moment p is proportional to its gradient.
We therefore set

q = −QI0(x0), p = −P∇I0(x0), (2.4)

and we propose to call Q the capacitance of the spherical
object, and P its polarizability. These two parameters are
intrinsic characteristics of the object. Their dependence on
its radius and on its optical properties will be investigated
in detail in the following.

The capacitance Q is non-zero (and in fact positive)
only if the sphere is absorbing. Indeed, equation (2.3) im-
plies that the total flux of radiation absorbed by the object
reads

δF = −4πq = 4πQI(x0). (2.5)

For a non-absorbing object, the leading contribution is
that of its dipole p. The corresponding polarizability P
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can be either positive or negative, depending on the nature
of the sphere. We finally observe that Q has the dimension
of a length, while P has the dimension of a volume. As a
consequence, for a sphere of radius R, these parameters
scale as Q ∼ R and P ∼ R3, roughly speaking. More
accurate predictions will be derived throughout the rest
of this paper.

• The case of a cylinder

The present formalism can be extended to other objects.
Let us consider the case of a rod, modeled as an infinitely
long cylinder, with radius R, whose axis is parallel to the
z-axis. Assume that the sample is infinitely long in this
direction. Then both I0(x) and the disturbance δI(x) only
depend on the two-dimensional perpendicular component
x⊥ = (x, y). Equation (2.3) is replaced by

δI(x⊥) = (q + p · ∇) ln
r0

r
= q ln

r0

r
−

p · r⊥
r2

,
(2.6)

where r⊥ = x⊥ − (x0)⊥, so that r = |r⊥| is the distance
to the axis of the cylinder. The length scale r0, requested
by dimensional analysis, is determined by conditions at
the boundaries of the sample, so that it is in general pro-
portional to the sample size. This sensitivity of δI(x) to
global properties of the sample arises because the log-
arithmic potential of a point charge in two-dimensional
electrostatics is divergent at long distances. As a conse-
quence, the capacitance Q is not intrinsic to the cylin-
der. An intrinsic quantity is its effective radius Reff , de-
fined by the condition that the cylindrically symmetric
part of the total intensity, including the charge term in
the right-hand side of equation (2.6), vanishes at a dis-
tance r = Reff from the axis of the cylinder. We thus
have I0(x0) + q ln(r0/Reff ) = 0, hence

Q =
1

ln
r0

Reff

· (2.7)

The general remarks of the previous paragraph also ap-
ply to a cylinder. We observe that Reff and r0 have the
dimension of a length, while the capacitance Q is dimen-
sionless, and the polarizability P has the dimension of an
area. As a consequence, the orders of magnitude Reff ∼ R
and P ∼ R2 can be expected for a cylinder of radius R.
More accurate predictions will be derived throughout the
rest of this paper.

2.2 Transmission in a thick-slab geometry

In order to illustrate the definitions of the capacitance Q,
of the effective radius Reff , and of the polarizability P
given in Section 2.1, we recall the derivation of the diffuse
image of a small object, i.e., the profile of transmitted
intensity, through a thick-slab sample. This geometry is
often encountered experimentally [2].

We consider an optically thick slab (0 < x < L), with
L� `, assumed to be infinite in the two transverse direc-
tions. The left side of the sample (x = 0) is subjected to an

incident plane wave, so that the solution of equation (2.1)
when the object is absent reads

I0(x) = I0

(
1−

x

L

)
. (2.8)

The intensity T (y, z) transmitted through the sample, and
emitted on the right side (x = L) at the point (y, z), is
proportional to the normal derivative of the diffuse inten-
sity at that point:

T (y, z) = −K`
∂I(x, y, z)

∂x

∣∣∣∣
x=L

. (2.9)

When there is no embedded object, equation (2.8) yields
a uniform transmission

T0 =
KI0`

L
· (2.10)

The prefactor K bears the dependence of the transmit-
ted intensity on the angle and polarization of the incident
and emitted radiation. If these characteristics are not re-
solved, namely if the “all-in, all-out” intensity is measured,
the prefactor K assumes the value K = 4π/(3λ2), with λ
being the wavelength of radiation. This universal result
is analogous to the Boltzmann formula for the conductiv-
ity [1,12]. The dependence of K on incidence angles and
polarizations is non-trivial, as it involves microscopic char-
acteristics of the medium, such as the anisotropy of the
scatterers. These features cannot be accurately described
within the diffusion approximation. Indeed, they originate
in the presence of skin layers near the boundaries of the
sample, with a thickness comparable to `, where the free
radiation is converted into diffuse intensity, and vice versa.
The appropriate tool to investigate skin-layer phenomena
is the Schwarzschild-Milne equation of RTT [12–14]. Ref-
erence [1] contains an overview of these recent works.

• The case of a sphere

Consider first the case where the embedded object is a
sphere, with capacitance Q and polarizability P , located
at x = x0, y = z = 0. Its charge and dipole moment read

q = −QI0
(

1−
x0

L

)
, p = pex, p =

PI0

L
,

(2.11)

with ex being the unit vector of the positive x-axis.

Along the lines of reference [2], the total intensity
can be calculated by summing the infinite-space expres-
sion (2.3) over a periodic double array of images. Setting
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ρ = (y2 + z2)1/2, we obtain

I(x) = I0

(
1−

x

L

)
+ q

+∞∑
n=−∞

(
1[

(x− x0 + 2nL)2 + ρ2
]1/2

−
1[

(x+ x0 + 2nL)2 + ρ2
]1/2

)

− p
+∞∑

n=−∞

(
x− x0 + 2nL[

(x− x0 + 2nL)2 + ρ2
]3/2

+
x+ x0 + 2nL[

(x+ x0 + 2nL)2 + ρ2
]3/2

)
.

(2.12)

The transmitted intensity T (y, z) = T (ρ) then reads

T (ρ)=T0

(
1−2Q(L−x0)

+∞∑
n=−∞

L−x0+2nL[
(L−x0+2nL)2+ρ2

]3/2
− 2P

+∞∑
n=−∞

2(L− x0 + 2nL)2 − ρ2[
(L− x0 + 2nL)2 + ρ2

]5/2
)
.

(2.13)

The diffuse image of the embedded sphere thus extends
over a region of transversal size ρ ∼ L− x0. If the sphere
is absorbing, the leading contribution of its charge is neg-
ative, with a relative magnitude proportional to Q/L, i.e.,
to R/L. If the sphere is not absorbing, the leading contri-
bution of its dipole is proportional to P/L3, i.e., to R3/L3,
in magnitude. It is negative for P > 0 (e.g. for a reflect-
ing sphere), and positive for P < 0 (e.g. for a transparent
sphere).

• The case of a cylinder

Consider the case where the embedded object is a cylin-
der, with given effective radius Reff and polarizability P ,
whose axis is parallel to the z-axis, and contains the point
x = x0, y = 0. The total intensity can be calculated by
applying the method of images to equation (2.6). We thus
obtain

I(x)= I0

(
1−

x

L

)
−
q

2

+∞∑
n=−∞

ln
(x− x0 + 2nL)2 + y2

(x+ x0 + 2nL)2 + y2

−p
+∞∑

n=−∞

(
x−x0+2nL

(x−x0+2nL)2+y2
+

x+x0+2nL

(x+x0+2nL)2+y2

)
.

(2.14)

This result has the following alternative closed-form ex-
pression

I(x)=I0

(
1−

x

L

)
−qRe

(
ln sin

π(ζ−x0)

2L
−ln sin

π(ζ+x0)

2L

)
− p

π

2L
Re

(
cot

π(ζ − x0)

2L
+ cot

π(ζ + x0)

2L

)
,

(2.15)

in terms of the complex variable ζ = x+ iy.
The charge q can be calculated by expressing that the

first line of the right-hand side of equation (2.15), includ-
ing the free term and the charge term, vanishes at the
distance Reff � L from the axis of the cylinder. We thus
obtain

q = −QI0
(

1−
x0

L

)
,

with Q =
1

ln
r0

Reff

and r0 =
2L

π
sin

πx0

L
,

(2.16)

in agreement with the general results (2.4, 2.7). This ex-
ample shows that the length scale r0 is proportional to the
sample thickness L, and that it depends on the position
of the embedded object.

Finally, the transmitted intensity T (y, z) = T (y) reads

T (y) = T0

1−Qπ
(

1−
x0

L

) sin
πx0

L

cos
πx0

L
+ cosh

πy

L

−P
π2

L2

1 + cos
πx0

L
cosh

πy

L(
cos

πx0

L
+ cosh

πy

L

)2

 .
(2.17)

The diffuse image of the cylinder again extends over a
region of transversal size y ∼ L − x0. If the cylinder is
absorbing, the leading contribution of its charge is nega-
tive. Its relative magnitude, proportional to Q, depends
logarithmically on the sample thickness L via r0, accord-
ing to equation (2.16). If the cylinder is not absorbing, the
leading contribution of its dipole has a magnitude of order
P/L2, i.e., R2/L2.

The characteristic profiles of transmitted radiation re-
called above have been observed experimentally by den
Outer et al. [2], in the case of pencils (black cylinders)
and glass fibers (transparent cylinders with a non-trivial
index mismatch).

2.3 Diffusion approximation

When the radius R of the embedded object is much larger
than `, its characteristics Q or Reff and P can be calcu-
lated within the diffusion approximation, along the lines
of reference [2]. Indeed, the diffusion approximation only
breaks down in a skin layer of thickness `� R around the
surface of the object. We summarize, for completeness, the
main predictions of this approach, in the three cases listed
in the introduction.
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2.4 The capacitance of a totally absorbing (black)
object

• The case of a sphere

Consider first a totally absorbing sphere of radius R� `,
located at the origin in an infinite medium. Within the
diffusion approximation, the intensity I(x) = I(r) is a so-
lution of equation (2.1), more precisely a spherically sym-
metric harmonic function, with the absorbing boundary
condition I(R) = 0 at the surface of the sphere. A ba-
sis of harmonic functions is given by {1, 1/r}, so that the
required solution is proportional to

I(r) = 1−
R

r
· (2.18)

By identifying this expression with equations (2.3, 2.4),
we get the simple result

Qdiff = R (2.19)

for the capacitance of an absorbing sphere, in the diffusion
approximation. We recall that this result is expected to
hold in the regime R � `. The dependence of Q on the
ratio R/` will be investigated in Section 3.2.

• The case of a cylinder

Consider a totally absorbing cylinder of radius R � `,
whose axis is parallel to the z-axis and passes through
the origin. A basis of cylindrically symmetric harmonic
functions is given by {1, ln r}, so that the required solution
is proportional to

I(r) = ln
R

r
· (2.20)

We thus have

Rdiff
eff = R. (2.21)

The effective radius of an absorbing cylinder coincides
with its geometrical radius, within the diffusion approxi-
mation. Again, this result is expected to hold for R � `
only, while the dependence of Reff on R/` will be investi-
gated in Section 4.2.

2.5 The polarizability of a non-absorbing object

• The case of a sphere

Consider a non-absorbing sphere of radius R� `, located
at the origin in an infinite medium. Within the diffusion
approximation, the only property of a material which is
naturally involved is the diffusion constant of radiation in
its bulk. So, assume that the diffusion constant reads D1

in the medium and D2 in the sphere.
Let the intensity be I1(x) outside the sphere (r > R)

and I2(x) in the sphere (r < R). These functions obey
equation (2.1), together with the conditions

I1 = I2, D1n · ∇I1 = D2n · ∇I2 (r = R),
(2.22)

expressing respectively the continuity of the intensity and
the conservation of the flux at the boundary of the sphere.
Here n denotes the outward normal to the sphere.

We look for a solution to equation (2.1) which behaves
as I(x) ≈ x far from the sphere. This formally amounts to
calculating the dipole moment of a dielectric sphere in a
uniform electric field. It can be checked that the solution
assumes the form

I1(x) =

(
1 +

P

r3

)
x, I2(x) = Ax.

(2.23)

The outer solution I1(x) is the superposition of a uniform
gradient and of a dipole field, while the inner solution
I2(x) is a uniform gradient. The dipole component of I1(x)
yields the polarizability P , again by equations (2.3, 2.4).

The conditions (2.22) yield two linear equations for the
unknowns P and A, hence

P =
D1 −D2

2D1 +D2
R3. (2.24)

In the present work we are mostly interested in the limit
D2 →∞, which yields the polarizability of a transparent
sphere, with the same optical index as the medium,

P diff = −R3, (2.25)

and in the limit D2 → 0, which yields the polarizability
of a totally reflecting sphere,

P diff =
R3

2
· (2.26)

Again, these results are expected to hold in the regime
R � `. The dependence of both polarizabilities on R/`
will be investigated in Sections 3.3 and 3.4.

• The case of a cylinder

Consider a non-absorbing cylinder of radius R � `, lo-
cated as above. Assume again that the diffusion constant
reads D1 in the medium and D2 in the cylinder. The in-
tensity field can be calculated along the lines of the above
case of a sphere. We thus obtain

P =
D1 −D2

D1 +D2
R2. (2.27)

Again, the limit D2 → ∞ yields the polarizability of a
transparent cylinder, with the same optical index as the
medium,

P diff = −R2, (2.28)

while the limit D2 → 0 yields the polarizability of a re-
flecting cylinder,

P diff = R2. (2.29)

The dependence of both polarizabilities on R/` will be
investigated in Sections 4.3 and 4.4.
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3 Radiative transfer theory: the case
of a sphere

We turn to the calculation of the capacitance Q or the
polarizability P of mesoscopic spheres, with a radius R
comparable to the mean free path `, in the three cases
listed in the Introduction. As recalled there, the appro-
priate framework is RTT, at least in the regime ` � λ,
corresponding to most experiments. In the following, we
consider for simplicity isotropic scattering of scalar waves.

Throughout Sections 3 and 4, all lengths are measured
in units of the mean free path `, for convenience, unless
otherwise stated. So R stands for the dimensionless ratio
R/`, and so on.

3.1 Basics of radiative transfer theory

We first recall the basic concepts of RTT, following the
book by Chandrasekhar [8]. In a time-independent situ-
ation, the basic quantity is the specific intensity I(x,n),
namely the amount of intensity located at the point x
and propagating into the direction of the unit vector n. In
the case of isotropic scattering, the local form of the RTT
equation reads

n · ∇I(x,n) = I(x) − I(x,n), (3.1)

in dimensionless units, where the source function I(x)
reads

I(x) =

∫
dω(n)

4π
I(x,n), (3.2)

with dω(n) being the element of solid angle around the
direction n. The source function I(x) will be identified
with the diffuse intensity I(x) involved in the diffusion
approximation.

The RTT equation (3.1) admits the formal solution

I(x,n) =

∫ ∞
0

e−sds I(y(x,n, s)), (3.3)

where y(x,n, s) is the point such that there is a ray of
optical length s, starting from point y and arriving at
point x while pointing into direction n. We thus obtain
the following linear integral form of the RTT equation for
the source function

I(x) =

∫
dω(n)

4π

∫ ∞
0

e−sds I(y(x,n, s)),
(3.4)

which will be the starting point of all subsequent develop-
ments.

In an infinite medium, without any object, we have

y(x,n, s) = x− ns, (3.5)

so that equation (3.4) can be recast as a convolution inte-
gral equation of the form

I(x) −

∫
d3yM(x− y)I(y) = 0, (3.6)

Fig. 1. Geometrical characteristics of rays which hit the object
under study (a sphere centered at O in Sect. 3, or a cylinder
whose axis is parallel to the z-axis and passes through O in
Sect. 4). Table 1 contains the expressions of various quantities
attached to this figure.

with a convolution kernel

M(x− y) =

∫
dω(n)

4π

∫ ∞
0

e−sds δ(3)(x− y− ns)

=
e−|x−y|

4π|x− y|2
· (3.7)

Its Fourier transform reads

M̂(q) =

∫
M(x)eiq·xd3x =

∫
dω(n)

4π

1

1− iq · n

=
arctan q

q
= 1−

q2

3
+ · · · , (3.8)

with q = |q|. Therefore the left-hand side of equation (3.6)
reads approximately (−1/3)∇2I(x), up to higher-order
derivatives. This demonstrates that RTT incorporates the
diffusion approximation in the regime where distances are
large with respect to the mean free path `, corresponding
to q � 1 in reduced units.

3.2 The capacitance of a totally absorbing (black)
sphere

By definition of a totally absorbing object, any ray which
hits it corresponds to radiation which is absorbed. A typ-
ical such ray, to be discarded from the integral in equa-
tion (3.4), is shown as TX in Figure 1.

We introduce spherical co-ordinates (r, θ, ϕ), such that
(x, y, z) = (r cos θ, r sin θ cosϕ, r sin θ sinϕ). Because of
the rotational invariance of the problem, we can choose
to locate the observation point X on the positive x-axis,
at a distance r > R, and the ray in the x-y plane, which
coincides with the plane of Figure 1. The direction n is
marked by the angle α (0 ≤ α ≤ π), while the incidence
angle of the ray at the surface of the sphere is β (0 ≤ β ≤
π/2). Some useful distances and other quantities related
to Figure 1 are listed in Table 1.
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Table 1. Summary of useful definitions, including distances and other quantities attached to the rays constructed in Figure 1,
domains I and II in both spherical and cylindrical geometries, and the associated integration measures.

r = |OX|

w = |AX| = r cosα = (r2 −R2 sin2 β)1/2

|OA| = r sinα = R sin β

Geometric quantities |AB| = |AC| = R cosβ = (R2 − r2 sin2 α)1/2

sinα0 = R/r

s0 = |XC| = w −R cosβ

r > R, s0 > 0

I : 0 < α < α0 and s0 < s <∞

Spherical geometry II :


0 < α < α0 and 0 < s < s0

or

α0 < α < π and 0 < s <∞

(Sect. 3)

∫∫
I,II,full

· · · =

∫∫
I,II,full

sinα dα

2
e−sds · · ·∫∫

I

· · · =
R2

2r2

∫ π/2

0

sin β cos β dβ

∫ ∞
s0

e−sds

cosα
· · ·

I : 0 < α < α0 and s0 < σ <∞

Cylindrical geometry II :


0 < α < α0 and 0 < σ < s0

or

α0 < α < π and 0 < σ <∞

(Sect. 4)

∫∫
I,II,full

· · · =

∫∫
I,II,full

dα

π
M2(σ) dσ · · ·∫∫

I

· · · =
R

πr

∫ π/2

0

cosβ dβ

∫ ∞
s0

M2(σ) dσ

cosα
· · ·

We are thus led to split the range of integration over n
and s in equation (3.4), and in all similar integrals to ap-
pear in the following, into two domains, respectively called
I and II, corresponding to rays which hit the sphere and
rays which do not. Table 1 also gives analytical definitions
of these domains, and of the following shorthand notations∫∫

I

· · · ,

∫∫
II

· · · ,

∫∫
full

· · · =

∫∫
I

· · ·+

∫∫
II

· · ·
(3.9)

for the integrals over either domain, and for the full inte-
gral over the whole range of parameters (0 < α < π and
0 < s <∞). The latter is normalized:∫∫

full

1 = 1. (3.10)

In the following, it will be advantageous to change vari-
able from α to β in integrals over the domain I, and to
use the second form of the integration measure given in
Table 1.

The RTT equation (3.4) for a totally absorbing sphere
thus reads

I(x) =

∫∫
II

I(x− ns). (3.11)

Along the lines of Section 2.3.1, we look for a rotationally
invariant solution I(x) = J(r) to equation (3.11), going to
unity at large distances. Equation (3.11) for the function
J(r) reads

J(r) =

∫∫
II

J(ρ), (3.12)

with

ρ = |x− ns| = (r2 + s2 − 2rs cosα)1/2.
(3.13)

We set

J(r) = 1−
Q

r
+ F (r), (3.14)

where F (r) represents the short-ranged correction to the
solution (2.3) of the diffusion equation. This function
therefore describes the skin layer around the sphere.
It is expected to fall off exponentially, with a decay length
given by the mean free path, i.e., F (r) ∼ e−r in reduced
units. Some algebra allows to recast equation (3.12) as an
equation for F (r) itself:

F (r) −

∫∫
full

F (ρ) +

∫∫
I

F (ρ) = S1(r) +QS2(r),
(3.15)
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with

S1(r) = −

∫∫
I

1, S2(r) = f(r) +

∫∫
I

1

ρ
,

(3.16)

and

f(r) =
1

r
−

∫∫
full

1

ρ
=
e−r

r
−

∫ ∞
r

e−sds

s
·

(3.17)

•Small-radius behavior

The behavior of the capacitance Q for R � 1 can be
derived by taking the Fourier transform at q→ 0 of equa-
tion (3.15), or equivalently its integral over all space. In-
deed, the first two terms of the left-hand side cancel out
by this procedure, because of the behavior (3.8) of the

Fourier-transformed convolution kernel M̂(q). The space
integral of f(r) is elementary, while the other contribution
to S2(r) is negligible. The integral of S1(r) can be per-
formed exactly, by changing variables in domain I from α
to β, and from R < r <∞ to R cosβ < w <∞, according
to the definitions given in Table 1. We thus obtain∫ ∞

0

r2 dr f(r) =
1

3
,

∫ ∞
R

r2 dr S1(r) = −
R2

2

∫ π/2

0

sinβ cosβ dβ

×

∫ ∞
R cosβ

eR cosβ−wdw

= −
R2

4
· (3.18)

By inserting these expressions into equation (3.15), we
obtain the following prediction

Q ≈
3R2

4`
, (3.19)

in physical units, for R� `. The leading correction to this
result is of relative order R/`. It cannot be predicted by
elementary means, since it involves, among other contribu-
tions, the space integral of the third term in the left-hand
side of equation (3.15).

The power of R/` involved in the leading correction to
the estimate (3.19) can be found more rapidly as follows.
Consider the integral (3.18) of the source function S1(r).
The lower bound of this integral has been set to the nat-
ural value r = R, since domains I and II are well-defined
for r > R only. Changing the lower bound from r = R
to r = 0, say, would alter the value of the integral by an
amount of relative order R/`. By consistency of the whole
approach, the relative correction to equation (3.19) is ex-
pected to be of the same order. This rule of thumb will be
used throughout the following.

The leading-order result (3.19) has been obtained in-
dependently in reference [7]. Paasschens and ’t Hooft [6]

obtain the estimate Q ≈ R2/`, by evaluating the aver-
age dwell time, i.e., the mean time spent by radiation in-
side the object. The discrepancy between their result and
equation (3.19) can be explained by noticing that the ap-
propriate quantity to consider in their approach is rather
the inverse of the mean inverse dwell time [15].

• Large-radius behavior

If the radius of the sphere is large (R � 1), its surface is
flat at the scale of the mean free path, where F (r) exhibits
appreciable variations. Hence in this limit equation (3.12)
is expected to become a RTT equation in a half-space.
This is indeed the case. Let us set

r = R+ τ (0 < τ <∞), (3.20)

and J(r) = Γ (τ). We have, to leading order as R→∞,

ρ = R+ τ ′, with τ ′ = τ − s cosα,
(3.21)

this quantity being positive in domain II, so that equa-
tion (3.12) can be recast as

Γ (τ)−

∫ ∞
0

dτ ′M1(τ − τ ′)Γ (τ ′) = 0,
(3.22)

where

M1(τ) =

∫∫
full

δ(τ − s cosα) =

∫ 1

0

dµ

2µ
e−|τ |/µ

= −
1

2
Ei
(
− |τ |

)
, (3.23)

with Ei(x) being the exponential integral function. The
full integral appears in equation (3.23), while domain I
does not contribute, because α0 = π/2 in this regime.

Equation (3.22) is nothing but the homogeneous
Schwarzschild-Milne (SM) integral equation of RTT in a
half-space with a free boundary. The functionM1(x) is the
associated Milne kernel for isotropic scattering, with the
subscript 1 reminding that M1(x) is a one-dimensional
projection of the RTT kernel M(x) of equation (3.7).
The normalized solution to equation (3.22) behaves as
[1,12–14]

Γ (τ) ≈ τ + τ0 (τ � 1), (3.24)

where

τ0 =
1

π

∫ π/2

0

dx

sin2 x
ln

tan2 x

3(1− x cotx)
= 0.710446090

(3.25)

is Milne’s extrapolation length [8,11]. This term reminds
that the extrapolation of the diffusive behavior (3.24) van-
ishes at τ = −τ0.

By requiring that expression (3.24) is proportional to
the solution of the diffusion equation, J(r) = 1 − Q/r,
in the range 1 � τ � R (see Eq. (3.14)), we obtain the
estimate

Q ≈
R2

R+ τ0`
≈ R

(
1−

τ0`

R

)
, (3.26)
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Fig. 2. Plot of the size factor Q/Qdiff of the capacitance of
an absorbing sphere, against the ratio R/`. Full line: outcome
of the numerical analysis explained in the text. Dashed lines:
small-radius and large-radius behaviors, as listed in Table 2.

in physical units, for R � `. The leading-order behavior
of equation (3.26) agrees with the prediction (2.19) of the
diffusion approximation, Qdiff = R. The first correction
to this result has a simple interpretation: the diffusion ap-
proximation has to be corrected by taking into account a
skin layer of thickness τ0`, and requiring that the diffusive
field does not vanish exactly at the surface of the sphere,
but at a distance τ0` inside the sphere.

For arbitrary values of the radius R of the sphere, its
capacitanceQ is such that the inhomogeneous linear equa-
tion (3.15) for F (r) has a solution which decays rapidly as
r → ∞. This algorithm can be implemented numerically,
along the lines of Section 5 of reference [12]. The idea is to
discretize equation (3.15) into an inhomogeneous system
of linear equations, and to solve the latter system numeri-
cally, first with a right-hand side equal to S1(r), yielding a
solution F1(r), then with a right-hand side equal to S2(r),
yielding a solution F2(r), so that Q is determined by re-
quiring that the linear combination F (r) = F1(r)+QF2(r)
decays rapidly as r →∞.

Figure 2 shows a plot of the size factor Q/Qdiff

against R/`. The numerical data obtained by the above
method smoothly interpolate between the asymptotic be-
haviors (3.19, 3.26), listed in Table 2.

3.3 The polarizability of a transparent sphere

Consider now a transparent sphere, having the same index
of refraction as the medium, e.g. a cavity containing no
scatterers. The status of the rays in domain II, which do
not hit the sphere, is unchanged with respect to the pre-
vious case of an absorbing sphere: y(x,n, s) is again given
by equation (3.5). A typical ray in domain I, which hits
the sphere, is the ray TX of Figure 1. The part BC does
not contribute to the optical length of the ray, which reads

s = |TB| + |CX| = |TB| + s0. The point T is therefore
located at

yT (x,n, s) = x− sTn,

with sT − s = |BC| = 2R cosβ = 2(R2 − r2 sin2 α)1/2.
(3.27)

The RTT equation (3.4) for a transparent sphere thus
reads

I(x) =

∫∫
I

I(x− nsT ) +

∫∫
II

I(x− ns).
(3.28)

Equation (3.28) admits the solution I(x) = 1, showing
that a transparent sphere has a vanishing capacitance, as
anticipated since it does not absorb radiation. In order to
calculate its polarizability P , in analogy with the outer
solution I1(x) of equation (2.23), we look for a solution to
equation (3.28) of the form

I(x) = xK(r) = rK(r) cos θ, (3.29)

with K(r) going to unity at large distances. Equa-
tion (3.28) then becomes the following equation for the
unknown function K(r):

rK(r) =

∫∫
I

(r − sT cosα)K(ρT ) +

∫∫
II

(r − s cosα)K(ρ),
(3.30)

where ρ has been defined in equation (3.13), and with

ρT = (r2 + s2
T − 2rsT cosα)1/2. (3.31)

It can be checked that equation (3.30) is indeed indepen-
dent of the particular choice we made, namely to put the
observation point on the positive x-axis.

We now set

K(r) = 1 +
P

r3
+G(r), (3.32)

where G(r) again represents the short-ranged skin-layer
correction to the solution (2.3) of the diffusion equation.
The equation for G(r) reads

rG(r) +

∫∫
full

(s cosα− r)G(ρ)

+

∫∫
I

[
(sT cosα− r)G(ρT ) + (r − s cosα)G(ρ)

]
= S1(r) + PS2(r), (3.33)

with

S1(r) =

∫∫
I

(s− sT ) cosα = −2R

∫∫
I

cosα cosβ,

S2(r)=−
e−r

r2
+

∫∫
I

(
r−sT cosα

ρ3
T

+
s cosα−r

ρ3

)
.

(3.34)
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Table 2. Asymptotic behavior at small and large radius of the various characteristics of embedded spherical and cylindrical
objects studied in the text. Absorbing objects are characterized by their capacitance Q or their effective radius Reff , while
non-absorbing, either transparent or reflecting, objects are characterized by their polarizability P . The large-radius behaviors
agree, to leading order, with the predictions of the diffusion approximation, recalled in Section 2.3.

Object
Small-radius behavior Large-radius behavior

(R� `) (R� `)

absorbing sphere
(Sect. 3.2, Fig. 2) Q ≈

3R2

4`

Q ≈ R︸︷︷︸
Qdiff

(
1−

τ0`

R

)

τ0 ≈ 0.710446

transparent sphere
(Sect. 3.3, Fig. 3)

P ≈ −
R3

3

(
1 +

3R

4`

) P ≈ −R3︸ ︷︷ ︸
P diff

(
1−

3τ01`

R

)
τ01 ≈ 0.4675

reflecting sphere
(Sect. 3.4, Fig. 4) P ≈

R2`

4

P ≈
R3

2︸︷︷︸
P diff

(
1 +

6`2

5R2

)

absorbing cylinder
(Sect. 4.2, Fig. 5)

Reff ≈ a`

(
R

`

) 16

3π2
e
−

4`

3R
Reff ≈ R︸︷︷︸

Rdiff
eff

(
1−

τ0`

R

)

a ≈ 1.20 τ0 ≈ 0.710446

transparent cylinder
(Sect. 4.3, Fig. 6)

P ≈ −
R2

2

(
1 +

R

`

) P ≈ −R2︸ ︷︷ ︸
P diff

(
1−

2τ01`

R

)
τ01 ≈ 0.2137

reflecting cylinder
(Sect. 4.4, Fig. 7) P ≈

3R`

8

P ≈ R2︸︷︷︸
P diff

(
1 +

4`2

5R2

)

•Small-radius behavior

The behavior of the polarizability P for R � 1 can be
derived by taking the Fourier transform at q → 0 of
equation (3.33), after multiplication by cos θ. The Fourier
transform of the function I(x) defined in equation (3.29)
reads

Î(q) =
4iπ

q2

∫ ∞
0

r drK(r)(sin qr − qr cos qr)

≈
4iπq

3

∫ ∞
0

r4 drK(r) (q → 0). (3.35)

Therefore both sides of equation (3.33) have to be inte-
grated with a weight r3 dr. The integral of S1(r) can again
be estimated by changing variables from α to β and from
r to w:∫ ∞
R

r3 dr S1(r)=−R3

∫ π/2

0

sin β cos2 β dβ

∫ ∞
R cos β

eR cos β−ww dw

= −R3

(
1

3
+
R

4

)
. (3.36)

The integral of the first contribution to S2(r) is elemen-
tary, while the second contribution is negligible.

We thus obtain the estimate

P ≈ −
R3

3

(
1 +

3R

4`

)
, (3.37)

in physical units. The rule of thumb exposed in Section 3.2
predicts that the leading correction to the estimate (3.37)
is of relative order R2/`2.

• Large-radius behavior

When the radius of the sphere is large (R � 1), equa-
tion (3.30) again becomes a RTT equation in a half-space.
With the definition (3.20), we have

ρ = R + τ ′, with τ ′ = τ − s cosα > 0, in domain II,
ρT = R+ τ ′′, with τ ′′ = s cosα− τ > 0, in domain I.

(3.38)

Setting K(r) = Γ (τ), equation (3.30) can be recast as

Γ (τ) −

∫ ∞
0

dτ ′
[
M1(τ − τ ′) +ML

1 (τ + τ ′)
]
Γ (τ ′) = 0,

(3.39)

where

ML
1 (x) =

∫∫
full

(1− 2 cos2 α) δ(x− s cosα)

=

∫ 1

0

dµ

2µ
(1− 2µ2)e−|x|/µ. (3.40)

We thus obtain the SM integral equation of RTT in a
half-space with partial reflection at the boundary, charac-
terized by an effective intensity reflection coefficient

R(µ) = 1− 2µ2. (3.41)
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Fig. 3. Same as Figure 2, for the size factor P/P diff of the
polarizability of a transparent sphere.

The reflection coefficient is negative for α small enough,
namely for µ = cosα > 1/

√
2, i.e., α < π/4. This obser-

vation is less surprising if we remember that we are only
investigating the contribution to the intensity field of the
dipole of the spherical object. This contribution is not a
positive function, because of its angular dependence, given
by equation (3.29).

The normalized solution to equation (3.39) behaves as

Γ (τ) ≈ τ + τ01 (τ � 1). (3.42)

The extrapolation length τ01 cannot be calculated analyt-
ically. We have evaluated it numerically, again along the
lines of Section 5 of reference [12], obtaining thus

τ01 ≈ 0.4675. (3.43)

By requiring that expression (3.42) is proportional to the
solution the diffusion equation, K(r) = 1 + P/r3, in the
range 1� τ � R (see Eq. (3.32)), we obtain the estimate

P ≈ −
R4

R+ 3τ01`
≈ −R3

(
1−

3τ01`

R

)
,

(3.44)

in physical units, for R� `. This result agrees, to leading
order, with the prediction (2.25) of the diffusion approxi-
mation, P diff = −R3.

Figure 3 shows a plot of the size factor P/P diff against
R/`. The numerical data interpolate between the asymp-
totic behaviors (3.37, 3.44), listed in Table 2.

3.4 The polarizability of a reflecting sphere

Consider now a reflecting sphere. The status of the rays in
domain II, which do not hit the sphere, is unchanged with
respect to the two previous cases. A typical ray in domain
I, which hits the sphere, is the ray RCX in Figure 1.

We have s− s0 = |RC|, while s0 = |XC|. The point R is
thus located at

yR(x,n, s) :

{
xR = r − s0 cosα+ (s− s0) cos(2β − α),
yR = s0 sinα+ (s− s0) sin(2β − α).

(3.45)

The RTT equation (3.4) for a reflecting sphere thus reads

I(x) =

∫∫
I

I(yR) +

∫∫
II

I(x− ns).
(3.46)

We again look for a solution to equation (3.46) of the form

I(x) = xK(r) = rK(r) cos θ, (3.47)

with K(r) going to unity at large distances. Equa-
tion (3.46) becomes

rK(r) =

∫∫
I

xRK(ρR) +

∫∫
II

(r − s cosα)K(ρ),
(3.48)

where ρ has been defined in equation (3.13), and with

ρR = |yR| = (x2
R + y2

R)1/2. (3.49)

Setting again

K(r) = 1 +
P

r3
+G(r), (3.50)

the equation for G(r) reads

rG(r) +

∫∫
full

(s cosα− r)G(ρ)

+

∫∫
I

[
(r − s cosα)G(ρ) − xRG(ρR)

]
= S1(r) + PS2(r),

(3.51)

with

S1(r) =

∫∫
I

(s cosα− r + xR)

= 2

∫∫
I

(s− s0) cos β cos(α− β),

S2(r) = −
e−r

r2
+

∫∫
I

(
xR

ρ3
R

+
s cosα− r

ρ3

)
·

(3.52)

• Small-radius behavior

The behavior of the polarizability P for R� 1 can again
be derived along the lines of the previous Section. The
integral∫ ∞
R

r3 dr S1(r) = R2

∫ π/2

0

sinβ cos2 β dβ

×

∫ ∞
R cosβ

eR cosβ−w(w cosβ +R sin2 β)dw

= R2

(
1

4
+
R

3

)
(3.53)
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leads to the estimate

P ≈
R2`

4
, (3.54)

in physical units, up to a correction of relative order R/`.
This result agrees with the leading-order prediction of
Lancaster and Nieuwenhuizen [7], P ≈ σtot`/(4π), with
the total cross-section σtot assuming its geometrical value
σtot = πR2.

• Large-radius behavior

When the radius of the sphere is large, equation (3.48)
again becomes a RTT equation in a half-space. In-
deed, equations (3.38) still hold, to leading order. Setting
K(r) = Γ (τ), equation (3.48) can be recast as

Γ (τ)−

∫ ∞
0

dτ ′
[
M1(τ − τ ′) +M1(τ + τ ′)

]
Γ (τ ′) = 0.

(3.55)

We thus obtain the SM integral equation of RTT in a half-
space with total reflection at the boundary. This equation
admits a constant solution, which we normalize by setting
Γ (τ) = 1.

In order to unravel skin-layer phenomena in the
present case, a careful analysis of corrections to the RTT
equation (3.55) is needed. Let us anticipate that we have
to work up to order 1/R3 included, and set

Γ (τ) = 1 +
Γ1(τ)

R
+
Γ2(τ)

R2
+
Γ3(τ)

R3
+ · · · ,

(3.56)

with the normalization condition Γ (0) = 1, hence Γ1(0) =
Γ2(0) = Γ3(0) = 0.

The successive correction terms of equation (3.56) obey
inhomogeneous SM integral equations, which can be ob-
tained recursively, by systematically expanding the var-
ious quantities as power series in 1/R, keeping τ and s
fixed. For example we have

s0 =
τ

cosα
+

sin2 α

2 cos3 α

τ2

R
+

sin4 α

2 cos5 α

τ3

R2

+
sin4 α(5− 4 cos2 α)

8 cos7 α

τ4

R3
+ · · · , (3.57)

and similar series expansions for β, xR, ρR, and so on.
Some algebra yields successively

Γ1(τ)−

∫ ∞
0

dτ ′[M1(τ−τ ′)+M1(τ+τ ′)](Γ1(τ ′)+τ ′−τ)=0,

(3.58)

whose solution, normalized to Γ1(0) = 0, is

Γ1(τ) = −τ, (3.59)

and

Γ2(τ) −

∫ ∞
0

dτ ′
[
M1(τ − τ ′) +M1(τ + τ ′)

]
Γ2(τ ′) = −

4

3
,

(3.60)

whose normalized solution is

Γ2(τ) = 2τ2. (3.61)

The determination of the third correction term is less easy.
Anticipating the behavior Γ3(τ) = k1τ + k2τ

2 + k3τ
3 +

γ3(τ), we obtain by consistency k3 = −10/3, k2 = 0, and

γ3(τ)−

∫ ∞
0

dτ ′
[
M1(τ − τ ′) +M1(τ + τ ′)

]
γ3(τ ′)

=
(

(k1 + 8)τ2 − τ4
)
M1(τ)

+
1

2

(
k1 + 2− (k1 + 6)τ − τ2 + τ3

)
e−τ ,

(3.62)

with γ3(0) = 0. A necessary condition for equation (3.62)
to admit a bounded solution is that the integral of its
right-hand side over the range 0 < τ < ∞ vanishes. This
determines k1 = −4/5, so that we have

Γ3(τ) = −
10

3
τ3 −

4

5
τ + γ3(τ). (3.63)

The calculation of the bounded part γ3(τ) cannot be per-
formed analytically.

By requiring that expression (3.56) is proportional to
the solution of the diffusion equation, K(r) = 1 + P/r3,
in the range 1 � τ � R (see Eq. (3.50)), we obtain the
estimate

P ≈
R3

2

(
1 +

6`2

5R2

)
, (3.64)

in physical units, for R � `. The leading-order behavior
of equation (3.64) agrees with the prediction of the diffu-
sion approximation (2.26), P diff = R3/2. The correction
term in `2/R2 entirely comes from the term in τ in equa-
tion (3.63), while equations (3.59, 3.61), and the leading
term in τ3 in equation (3.63) just reproduce the expansion
of the diffusive solution for τ � R.

Figure 4 shows a plot of the size factor P/P diff against
R/`. The numerical data interpolate between the asymp-
totic behaviors (3.54, 3.64), listed in Table 2.

To close up, we mention that the result (3.64) can be
recovered by the following more direct, albeit less system-
atic, alternative route. Assuming the behavior

P ≈
R3

2
+AR, (3.65)

and systematically using expansions such as equa-
tion (3.57) for s0, we can recast the right-hand side of
equation (3.51) as

S1(r)+PS2(r)≈
1

R2

∫ π/2

0

sinαdα

2

∫ ∞
τ/cosα

e−sdsΦ(τ, α, s),

(3.66)

with

Φ(τ, α, s) = 4A cos2 α+ (7 cos2 α− 3)τ2

+(9−17 cos2 α)τs cosα+(10 cos2 α−6)s2 cos2 α.

(3.67)
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Fig. 4. Same as Figure 2, for the size factor P/P diff of the
polarizability of a reflecting sphere.

Setting G(r) = Γ̃ (τ)/R3, equation (3.51) implies that

Γ̃ (τ) obeys an inhomogeneous SM equation, with a right-
hand side given by equation (3.66), without the prefactor
1/R2. In order for this SM equation to have a bounded so-

lution Γ̃ (τ), it is necessary that the τ -integral of its right-
hand side vanishes. We thus obtain after some algebra
A = 3/5, in agreement with equation (3.64). The corre-

sponding solution, normalized by the condition Γ̃ (0) = 0,

reads Γ̃ (τ) = (3/2)γ3(τ).

4 Radiative transfer theory: the case
of a cylinder

We turn to the calculation of the effective radius Reff

or the polarizability P of cylinders. This situation is of
special interest, since it corresponds to the experiments
by den Outer et al. [2]. We recall that throughout this
section lengths are measured in units of the mean free
path `, unless otherwise stated.

4.1 Radiative transfer theory in cylindrical geometry

We are led to consider RTT in the presence of a cylindrical
object of radius R, whose axis is parallel to the z-axis
and passes through the origin. In such a circumstance,
the source function I(x) is independent of the co-ordinate
z. We denote by x = x⊥ = (x, y) the position in the
plane perpendicular to the z-axis, and we use cylindrical
co-ordinates (r, θ, z), such that (x, y) = (r cos θ, r sin θ).
The x-y plane again coincides with the plane of Figure 1.

The key ingredient of this analysis will be the two-
dimensional projection M2(σ) of the RTT kernel M(x)

of equation (3.7), defined in analogy with the one-
dimensional projection M1(τ) of equation (3.23), namely

M2(σ) =

∫
dω(n)

4π

∫ ∞
0

e−sds δ(σ − sn‖)

=

∫ π/2

0

dφ e−σ/ cosφ, (4.1)

where φ is the angle between the unit vector n and the x-y
plane, with 0 ≤ φ ≤ π/2, so that n‖ = cosφ is the length
of the projection of n onto this plane. The last integral
expression of equation (4.1) will allow us to calculate the
kernel function M2(σ) numerically, and to perform the re-
quired analytical calculations involving this function. We
mention for completeness that its derivative is equal to
dM2(σ)/dσ = −K0(σ), with K0 being the modified Bessel
function.

4.2 The effective radius of a totally absorbing (black)
cylinder

We first investigate the effective radius Reff of an absorb-
ing cylinder of radius R. In analogy with the spherical
geometry dealt with in Section 3, we split the range of
integration over σ and α into two domains, I and II, re-
spectively corresponding to rays which hit the cylinder
and which do not. The definitions of these domains, and
of the corresponding integration measures, are given in
Table 1.

In analogy with equation (3.11), the RTT equation for
an absorbing cylinder reads

I(x) =

∫∫
II

I(x− nσ), (4.2)

with n being the unit vector of the plane with a direction
marked by the angle α. Along the lines of Sections 2.3.1
and 3.2, we look for a cylindrically symmetric solution
I(x) = J(r) to equation (4.2). This equation becomes

J(r) =

∫∫
II

J(ρ), (4.3)

with

ρ = |x− nσ| = (r2 + σ2 − 2rσ cosα)1/2.
(4.4)

We normalize the solution J(r) by setting

J(r) = ln
r

Reff
+ F (r), (4.5)

where the function F (r), describing the skin-layer effect,
is again expected to decay exponentially as r → ∞. We
recast equation (4.3) as an equation for F (r) itself:

F (r) −

∫∫
full

F (ρ) +

∫∫
I

F (ρ) = S1(r) + S2(r) lnReff ,
(4.6)
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with

S1(r) = f(r) −

∫∫
I

ln ρ, S2(r) =

∫∫
I

1,
(4.7)

and

f(r) =

∫∫
full

ln
ρ

r
=

∫ ∞
r

M2(σ) dσ ln
σ

r
·

(4.8)

• Small-radius behavior

The behavior of the effective radius Reff for R � 1 can
again be derived by taking the Fourier transform at q→ 0
of equation (4.6), or equivalently its integral over all space.
The space integrals of f(r) and S2(r) can be evaluated by
changing variables in domain I from α to β, and from
R < r <∞ to R cosβ < w <∞, and by inserting the last
integral representation (4.1) for M2(σ). We thus obtain∫ ∞

0

rdrf(r) =
1

4

∫ ∞
0

σ2M2(σ)dσ=
1

2

∫ π/2

0

cos3 φdφ=
1

3
,∫ ∞

R

r dr S2(r) =
R

π

∫ π/2

0

cosβ dβ

∫ π/2

0

cosφ dφ

×

∫ ∞
R cosβ

e(R cosβ−w)/ cosφdw =
R

4
,

(4.9)

while the second contribution to S1(r) is negligible.
These exact expressions lead to the estimate

lnReff ≈ −
4

3R
· (4.10)

It turns out that this leading-order estimate has an in-
teresting correction of relative order R lnR, originating in
the space integral of the last term in the left-hand side
of equation (4.6), which can be estimated as follows. The
R→ 0 limit F0(r) of the function F (r) obeys the equation

F0(r) −

∫∫
full

F0(ρ) = f(r)−
4

3πr

∫ ∞
r

M2(σ)dσ.
(4.11)

We observe that the right-hand side of this equation di-
verges as −4/(3πr) as r → 0. So does its solution:

F0(r) ≈ −
4

3πr
(r → 0), (4.12)

since the integral in the left-hand side of equation (4.11)
is less singular. The space integral of the last term in the
left-hand side of equation (4.6) can be estimated by setting
δ = σ − s0 ≈ σ +R cosβ − r > 0:∫ ∞

0

r dr

∫∫
I

F0(ρ) ≈ −
4R

3π2

∫ ∞
0

dr

∫ ∞
0

M2(σ)dσ

×

∫ π/2

0

cosβ dβ(
R2 + δ2 − 2Rδ cosβ

)1/2
≈−

4R

3π2

∫ ∞
0

M2(σ)dσ

(
ln

2σ

R
+
π

2
+1

)
≈

4R

3π2

(
ln
R

4
+ γE −

π

2

)
,

(4.13)

Fig. 5. Same as Figure 2, for the size factor Reff /R
diff
eff of the

effective radius of an absorbing cylinder (logarithmic scale).

with γE being Euler’s constant.
We thus obtain the more accurate estimate

ln
Reff

`
≈ −

4`

3R
+

16

3π2
ln
R

`
+ ln a,

(4.14)

i.e.,

Reff ≈ a`

(
R

`

) 16

3π2
e
−

4`

3R , (4.15)

in physical units. It is worth noticing that the correction
in R lnR derived in equation (4.13) is responsible for the
occurrence of the power-law prefactor in the result (4.15).
The dimensionless absolute prefactor a receives contribu-
tions from several corrections of relative order R to the
above estimates. A fit of the numerical data shown in Fig-
ure 5 leads to a ≈ 1.20.

The capacitance Q thus reads, from equation (2.7),

Q ≈
3R

4`
+

(
3

π2
ln
R

`
−

9

16
ln
r0

a`

)
R2

`2
·

(4.16)

The leading behavior of the capacitance is therefore an
intrinsic characteristic of the absorbing cylinder, while the
length scale r0, involving the geometry of the sample, only
appears logarithmically in the correction term.

• Large-radius behavior

If the radius of the cylinder is large (R � 1), equa-
tion (4.3) again becomes the SM equation (3.22) of RTT
in a half-space with a free boundary. By requiring that
the asymptotic behavior (3.24) of its solution is propor-
tional to the solution of the diffusion equation, J(r) =
ln(r/Reff ), in the range 1 � τ � R (see Eq. (4.5)), we
obtain the estimate

Reff ≈ Re
−τ0`/R ≈ R

(
1−

τ0`

R

)
, (4.17)
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in physical units, for R � `, where τ0 is again Milne’s
extrapolation length (3.25). This result agrees, to leading
order, with the prediction (2.21) of the diffusion approxi-

mation, Rdiff
eff = R.

Figure 5 shows a logarithmic plot of the size factor

Reff /R
diff
eff against R/`. The numerical data interpolate

between the asymptotic behaviors (4.15, 4.17), listed in
Table 2.

4.3 The polarizability of a transparent cylinder

In analogy with equation (3.28), the RTT equation for a
transparent cylinder reads

I(x) =

∫∫
I

I(x− nσT ) +

∫∫
II

I(x− nσ),
(4.18)

with

σT = σ + 2R cosβ = σ + 2(R2 − r2 sin2 α)1/2.
(4.19)

In order to calculate the polarizability P , along the lines
of Sections 2.3.2 and 3.3, we look for a solution to equa-
tion (4.18) of the form

I(x) = xK(r) = rK(r) cos θ, (4.20)

with K(r) going to unity at large distances. Equa-
tion (4.18) becomes

rK(r) =

∫∫
I

(r − σT cosα)K(ρT ) +

∫∫
II

(r − σ cosα)K(ρ),

(4.21)

where ρ has been defined in equation (4.4), and with

ρT = (r2 + σ2
T − 2rσT cosα)1/2. (4.22)

We set

K(r) = 1 +
P

r2
+G(r), (4.23)

where G(r) again represents the short-ranged skin-layer
correction to the solution of the diffusion equation. The
equation for G(r) reads

rG(r) +

∫∫
full

(σ cosα− r)G(ρ)

+

∫∫
I

[
(σT cosα− r)G(ρT ) + (r − σ cosα)G(ρ)

]
= S1(r) + PS2(r), (4.24)

with

S1(r) =

∫∫
I

(σ − σT ) cosα = −2R

∫∫
I

cosα cosβ,

S2(r) = −g(r) +

∫∫
I

(
r − σT cosα

ρ2
T

+
σ cosα− r

ρ2

)
,

(4.25)

and

g(r) =
1

r
−

∫∫
full

r − σ cosα

ρ2

=
1

r

∫ ∞
r

M2(σ)dσ.

(4.26)

• Small-radius behavior

The behavior of the polarizability P for R� 1 can again
be derived by taking the Fourier transform at q → 0 of
equation (4.24), after multiplication by cos θ. The Fourier
transform of the function I(x) defined in equation (4.20)
reads

Î(q)=2iπ

∫ ∞
0

r2drK(r)J1(qr)≈ iπq

∫ ∞
0

r3drK(r)(q→0),

(4.27)

where J1 is the Bessel function. Therefore both sides of
equation (4.24) have to be integrated with a weight r2dr.
The integral of S1(r) can again be estimated by changing
variables from α to β and from r to w. We thus obtain∫ ∞

R

r2 dr S1(r) = −
2R2

π

∫ π/2

0

cos2 βdβ

×

∫ π/2

0

cosφdφ

∫ ∞
R cosβ

e(R cosβ−w)/ cosφw dw

= −
R2

3
(1 +R),∫ ∞

0

r2drg(r) =
1

2

∫ ∞
0

σ2M2(σ)dσ

=

∫ π/2

0

cos3 φ dφ =
2

3
, (4.28)

while the second contribution to S2(r) is negligible. This
leads to the estimate

P ≈ −
R2

2

(
1 +

R

`

)
, (4.29)

in physical units, up to a correction of relative orderR2/`2.

• Large-radius behavior

When the radius of the sphere is large (R � 1), equa-
tion (4.21) again becomes a RTT equation in a half-
space. With the definitions (3.20, 3.38), and setting again
K(r) = Γ (τ), we obtain

Γ (τ)−

∫ ∞
0

dτ ′
[
M1(τ − τ ′) +ML

1 (τ + τ ′)
]
Γ (τ ′) = 0,

(4.30)

where

M1(x) =

∫∫
full

δ(x− σ cosα) =

∫ 1

0

dµ

2µ
e−|x|/µ,

ML
1 (x) =

∫∫
full

(1− 2 cos2 α)δ(x− σ cosα)

=

∫ 1

0

dµ

2µ
(1− 2µ)e−|x|/µ. (4.31)
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Fig. 6. Same as Figure 2, for the size factor P/P diff of the
polarizability of a transparent cylinder.

We thus obtain the SM equation in a half-space with par-
tial reflection at the boundary, characterized by a reflec-
tion coefficient

R(µ) = 1− 2µ, (4.32)

which is again negative for α small enough, namely µ =
cosα > 1/2, i.e., α < π/3.

The normalized solution to equation (4.30) again be-
haves as

Γ (τ) ≈ τ + τ01 (τ � 1). (4.33)

We have evaluated τ01 numerically, again along the lines
of Section 5 of reference [12], obtaining thus

τ01 ≈ 0.2137. (4.34)

By requiring that expression (4.33) is proportional to the
solution of the diffusion equation, K(r) = 1+P/r2, in the
range 1� τ � R (see Eq. (4.23)), we obtain the estimate

P ≈ −
R3

R+ 2τ01`
≈ −R2

(
1−

2τ01`

R

)
,

(4.35)

in physical units, for R� `. This result agrees, to leading
order, with the prediction (2.28) of the diffusion approxi-
mation, P diff = −R2.

Figure 6 shows a plot of the size factor P/P diff against
R/`. The numerical data interpolate between the asymp-
totic behaviors (4.29, 4.35), listed in Table 2.

4.4 The polarizability of a reflecting cylinder

In analogy with equation (3.46), the RTT equation for a
reflecting cylinder reads

I(x) =

∫∫
I

I(yR) +

∫∫
II

I(x− nσ),
(4.36)

with

yR(x,n, s) :

{
xR = r − s0 cosα+ (σ − s0) cos(2β − α),
yR = s0 sinα+ (σ − s0) sin(2β − α).

(4.37)

We again look for a solution to equation (4.36) of the form

I(x) = xK(r) = rK(r) cos θ, (4.38)

with K(r) going to unity at large distances. Equa-
tion (4.36) becomes

rK(r) =

∫∫
I

xRK(ρR) +

∫∫
II

(r − σ cosα)K(ρ),
(4.39)

with the notation (3.49). Setting

K(r) = 1 +
P

r2
+G(r), (4.40)

the equation for G(r) reads

rG(r) +

∫∫
full

(σ cosα− r)G(ρ)

+

∫∫
I

[
(r − σ cosα)G(ρ) − xRG(ρR)

]
= S1(r) + PS2(r),

(4.41)

with

S1(r) = 2

∫∫
I

(σ − s0) cosβ cos(α− β),

S2(r) = −g(r) +

∫∫
I

(
xR

ρ2
R

+
σ cosα− r

ρ2

)
,

(4.42)

where g(r) has been defined in equation (4.26).

• Small-radius behavior

The behavior of the polarizability P for R� 1 can again
be derived along the lines of the previous sections. We
have∫ ∞
R

r2drS1(r) =
2R

π

∫ π/2

0

cos2 βdβ

∫ π/2

0

cos2 φdφ

×

∫ ∞
R cos β

e(R cos β−w)/ cosφ(w cos β+R sin2 β)dw

= R

(
1

4
+
R

3

)
,

(4.43)

hence the estimate

P ≈
3R`

8
, (4.44)

in physical units, up to a correction of relative order R/`.
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Fig. 7. Same as Figure 2, for the size factor P/P diff of the
polarizability of a reflecting cylinder.

• Large-radius behavior

In analogy with Section 3.5, we have been led to study
the solution to the RTT equation, including corrections of
order 1/R3 included. Setting

Γ (τ) = 1 +
Γ1(τ)

R
+
Γ2(τ)

R2
+
Γ3(τ)

R3
+ · · · ,

(4.45)

we obtain successively

Γ1(τ)=−τ, Γ2(τ)=
3

2
τ2, Γ3(τ)=−2τ3−

2

5
τ+γ3(τ).

(4.46)

By requiring that expression (4.45) is proportional to the
solution of the diffusion equation, K(r) = 1+P/r2, in the
range 1� τ � R (see Eq. (4.40)), we obtain the estimate

P ≈ R2

(
1 +

4`2

5R2

)
, (4.47)

in physical units, for R� `. This result agrees, to leading
order, with the prediction (2.29) of the diffusion approxi-
mation, P diff = R2.

Figure 7 shows a plot of the size factor P/P diff against
R/`. The numerical data interpolate between the asymp-
totic behaviors (4.44, 4.47), listed in Table 2.

We have also checked that the alternative approach
sketched at the end of Section 3.5 permits to recover the
result (4.47).

5 Discussion

In this paper, we have first recalled that the long-range
effects of an isolated embedded object on the diffusive
propagation of radiation in an otherwise homogeneous,
non-absorbing turbid medium can be described within

the diffusion approximation [2,4–7]. The leading term of
a multipole expansion involve a (negative) charge q (for
an absorbing object) or a dipole moment p (for a non-
absorbing object). We have emphasized the role of the
associated intrinsic characteristics of a spherical object,
namely its capacitance Q and its polarizability P . For
cylinders, we have underlined that the right intrinsic quan-
tity to be considered is its effective radius Reff . The in-
trinsic quantities Q, Reff , P are related to the observables
q and p, which depend on the geometry of the sample,
through eqs. (2.4), (2.7). We have shown that RTT pro-
vides the adequate framework to evaluate the character-
istics Q, Reff , and P of mesoscopic objects, with a radius
R comparable to the mean free path `, the latter being
much larger than the wavelength λ. Considering for sim-
plicity the case of isotropic scattering of scalar waves, we
have worked out this program for spheres and cylinders of
radius R, in several situations:

(i) totally absorbing (black) object,
(ii) transparent object, with the same optical index as

the medium,
(iii) totally reflecting object.

For large objects (R � `), we recover the predictions
of the diffusion approximation [2,6], and we give the ana-
lytical form of the first correction to this approximation,
which is either proportional to `/R or to (`/R)2. In the
opposite regime of small objects (R� `), our results have
some overlap with those obtained by the partial-wave ex-
pansion of Lancaster and Nieuwenhuizen [7]. In the inter-
mediate situation, i.e., for generic values of the ratio R/`,
the characteristicsQ,Reff , or P differ from the predictions

Qdiff , Rdiff
eff , or P diff of the diffusion approximation by a

multiplicative size factor, which depends continuously on
R/`, and smoothly interpolates between the analytical re-
sults pertaining to both limiting regimes. For cases (i) and
(ii), the size factor is a monotonically increasing function
of R/`, converging to unity from below, with a correction
of order `/R. For case (iii), the size factor is a decreasing
function of R/`, converging to unity from above, with a
correction of order (`/R)2.

The characteristics Q, Reff , and P of spheres and
cylinders are expected not to be fully universal, but rather
to weakly depend on microscopic details of the scatter-
ing process. The associated size factors have been calcu-
lated in this work for isotropic scattering of scalar waves.
They would be slightly different in other situations, such
as anisotropic scattering of scalar waves, or Rayleigh scat-
tering of vector waves. This weak dependence can be il-
lustrated on the example of large absorbing objects. In-
deed, for both spheres and cylinders, the first correction
to the diffusion approximation has been shown to be pro-
portional to the extrapolation length τ0 of the problem
of RTT in a half-space with a free boundary. This quan-
tity is known to be τ0 ≈ 0.718211 for very anisotropic
scattering of scalar waves [13], in units of the scattering
mean free path `?, and τ0 ≈ 0.712110 for Rayleigh scatter-
ing of electromagnetic waves [14], these numbers being re-
spectively 1.09% and 0.23% above the Milne value (3.25),
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τ0 ≈ 0.710446, corresponding to isotropic scattering of
scalar waves.

Finally, in all the situations considered in this work,
the effect of the embedded object on a light ray can be
described in simple terms. In cases (i) and (iii) radia-
tion does not enter the object at all, while in case (ii)
it propagates ballistically inside the object. The present
RTT approach can be generalized, at least in principle,
to mesoscopic spheres or cylinders with yet other kinds
of optical properties. For instance, situations where radi-
ation is partly absorbed in the embedded object and/or
in the medium, can be dealt with rather simply, in the
general case where the corresponding absorption lengths
are comparable to the size of the object. A more complex
situation is e.g. that of a transparent object, with an opti-
cal index different from that of the medium, so that light
undergoes multiple reflections inside the object. In this
case the RTT equation receives an infinite series of con-
tributions from the multiply reflected light rays, weighted
by the appropriate extinction factors. Furthermore, as op-
posed to the cases treated in the present paper, the light
rays are not contained in a plane in general, so that the
relevant integral equations keep two angular variables.
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Maynard, M. Nieto-Vesperinas, and J. Ricka. This work has
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Light in Strongly Scattering Media, under contract no. ER-
BCHRXCT 930373.
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